qPCR Lentivirus Titer Kit

Cat. No.
LV900
Unit
100 rxn
Price
$212.00
Cat. No. LV900
Name qPCR Lentivirus Titer Kit
Unit 100 rxn
Category qPCR Virus Titer Kits
Description

The only kit on the market with complete elimination of NTC!

abm’s qPCR Lentivirus Titer Kit is a one-step assay that employs a quick RNA extraction step that is followed by RT-qPCR, offering high sensitivity and specificity for accurate lentivirus titer quantification. Designed to minimize non-specific background, this kit delivers superior performance compared to others on the market. The MasterMix contains a dye similar to SYBR Green™ and EvaGreen®, optimizing amplification efficiency, while the ROX Reference Dye is provided separately for broad compatibility with most qPCR instruments. For detailed instrument compatibility, refer to our ROX Machine Compatibility Chart.

Kit Features:

  • Saves time and eliminates inaccuracy: Quick RNA extraction
  • No NTC amplification: Eliminates non-specific (NTC) signals due to our unique primer design
  • Can be used directly on neat viral particles
  • Reduces variability: Ready-to-use reagent mix
  • RT-qPCR in one step: More sensitive and accurate than other methods
  • Contains dye comparable to SYBR Green™ and EvaGreen™

Bundle up, save more!  These cost-saving bundles combine our best-selling Lentivirus qPCR Titer Kit with reagents for virus packaging and transduction!

Product Component Quantity
BlasTaq™ 2X qPCR Titer MasterMix 1.25 ml
Primer Mix 100 rxn (200 µl)
Standard Control DNA 50 µl
Virus Lysis Buffer 800 µl
ROX Reference Dye 15 µl
Nuclease-Free H2O 2 x 1.0 ml

Customer Testimonials

"I recently received one of your qPCR Lentivirus Titration Kits and I think it is a wonderful product. The protocol is simple, fast, and accurate. I also really appreciate that there is an online titer calculator accompanying the kit on your website. The kit is allowing me to produce my own lentivirus, which is cheaper and more customizable."

- Kelly Taylor, Medical University of South Carolina

 

"We like the qPCR Lentivirus Titration(Titer) Kit. It is very easy to use and the titration can be completed in a short time."

- Ying Liu, University of Texas Health Science Center Houston

 

"We have been using Lentivirus qPCR kit to check our viruses for those viruses without reporter genes for a few years. The kit is very easy to use. We love it."

- Xinping Huang, Emory University

 

"I tested LV900 with the dilution that you suggested and also compared it to another method that measures the functional titer counting the viral integrations in the genome of HEK cells. Diluting the viral lysate solved my problems and improved my results. Now, I decided to use the kit for my future lentiviral titration. Thank you very much for your help and the great service!"

- Anna Schnaubelt, University Hospital Heidelberg

ISO 13485:2016 MDSAP Certified

ISO 13485:2016 MDSAP Certified
Our PCR Products are manufactured under a Quality Management System conforming with ISO 13485:2016 as certified by Intertek (a MDSAP recognized auditing organization).

Storage Condition

Store at -20°C. This product is stable for 2 year from the date of shipping if stored and handled properly. 

Note

qPCR Lentivirus Titer Kit comes with a separate vial of ROX Reference Dye which can be added depending on the qPCR machine type, as listed in the table below.

MACHINE TYPE MACHINE
High ROX Machines
  • ABI ® 7000, 7300, 7700, 7900, 7900HT, StepOnePlus™, StepOne™, OpenArray, PRISM™ Sequencing Detection Series
  • Biometra TOptical
  • Fluidigm BioMark™
  • Wafergene SmartChip System
  • TianLong TL998 System
Low ROX Machines
  • ABI® 7500, 7500 Fast, Viia™ 7, QuantStudio, QuantStudio 3/5/6/7
  • BioGene InSyte™
  • Illumina Eco
  • Analytikjena qTower Series
  • Stratagene® Mx3000, Mx3005, Mx4000
No ROX machines
  • BioRad® CFX96, CFX384, Chromo4™, CFX Connect™, Opticon 2, MiniOpticon™
  • Roche LightCycler® (480, 1536, Nano)
  • MJ Research Opticon™, Opticon™ 2, Chromo® 4
  • Eppendorf™ Realplex 4
  • BioGene SynChron™
  • Corbett Rotor-gene® (3000, 6200, 62H0, 6500, 65H0, 6600)
  • Eppendorf Mastercycler® realplex (s, 4 , 4s), Pro (S, 384), Nexus (gradient, eco, flat)
  • Cepheid SmartCyler, GeneXpert
  • Enigma™ ML
  • Idaho LightScanner® (24, 32), RapidCycler®2, R.A.P.I.D (LT, LT Food), RAZOR EX, JBAIDS
  • Qiagen Rotor-Gene™ (Q, 6000)
  • Takara Dice™
  • Thermo Scientific PikoReal
  • DNA-Technology DT96, DTlite, DT-322
  • Bioer LineGene (3310/3320, K FQD-48A, I, II, 9620, 9640, 9660, 9680)
  • Bioneer Exicycler™
Material Citation If use of this material results in a scientific publication, please cite the material in the following manner: Applied Biological Materials Inc, Cat. No. LV900
Search CoA here
MSDS
  • Zhou, X., LeBleu, V. S., Fletcher-Sananikone, E., Kim, J., Dai, J., Li, B., Wu, C.-C., Sugimoto, H., Miyake, T., Becker, L. M., Volpert, O. V., Lawson, E., Espinosa Da Silva, C., Patel, S. I., Kizu, A., Ehsanipour, E. A., Sha, D., Karam, J. A., McAndrews, K. M., & Kalluri, R. (2024). Vascular heterogeneity of tight junction Claudins guides organotropic metastasis. Nature Cancer, 5(9), 1371–1389. https://doi.org/10.1038/s43018-024-00813-1
  • Bayin, N.S., Placantonakis, D.G. (2018). Selective Targeting of CD133-Expressing Glioblastoma Stem Cells Using Lentiviral Vectors. In: Placantonakis, D. (eds) Glioblastoma. Methods in Molecular Biology, vol 1741. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7659-1_7

    Berger, M., Degey, M., Leblond Chain, J., Maquoi, E., Evrard, B., Lechanteur, A., & Piel, G. (2023). Effect of PEG anchor and serum on lipid nanoparticles: development of a nanoparticles tracking method. Pharmaceutics, 15(2), 597. https://doi.org/10.3390/pharmaceutics15020597

    Bodas, M., Subramaniyan, B., Moore, A. R., Metcalf, J. P., Ocañas, S. R., Freeman, W. M., ... & Walters, M. S. (2021). The NOTCH3 Downstream Target HEYL Regulates Human Airway Epithelial Club Cell Differentiation. bioRxiv, 2021-03. https://doi.org/10.1101/2021.03.10.434858

    Costanza, B., Rademaker, G., Tiamiou, A., De Tullio, P., Leenders, J., Blomme, A., ... & Castronovo, V. (2019). Transforming growth factor beta‐induced, an extracellular matrix interacting protein, enhances glycolysis and promotes pancreatic cancer cell migration. International journal of cancer, 145(6), 1570-1584. https://doi.org/10.1002/ijc.32247

    Deroyer, C., Charlier, E., Neuville, S. et al. CEMIP (KIAA1199) induces a fibrosis-like process in osteoarthritic chondrocytes. Cell Death Dis 10, 103 (2019). https://doi.org/10.1038/s41419-019-1377-8

    Fettweis, G., Di Valentin, E., L'homme, L., Lassence, C., Dequiedt, F., Fillet, M., ... & Piette, J. (2017). RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1864(1), 113-124. https://doi.org/10.1016/j.bbamcr.2016.10.014

    Kaur, B., Sharma, P.K., Chatterjee, B. et al. Defective quality control autophagy in Hyperhomocysteinemia promotes ER stress and consequent neuronal apoptosis through proteotoxicity. Cell Commun Signal 21, 258 (2023). https://doi.org/10.1186/s12964-023-01288-w 

    Kim, T. Y., Kim, J. Y., Kwon, H. C., Jeon, S., ji Lee, S., Jung, H., ... & Lee, C. J. (2022). Astersaponin I from Aster koraiensis is a natural viral fusion blocker that inhibits the infection of SARS-CoV-2 variants and syncytium formation. Antiviral Research, 208, 105428. https://doi.org/10.1016/j.antiviral.2022.105428

    Lerchner, W., Dash, K., Rose, D., Eldridge, M. A., Rothenhoefer, K. M., Yan, X., ... & Richmond, B. J. (2023). Efficient viral expression of a chemogenetic receptor in the old-world monkey amygdala. Current Research in Neurobiology, 4, 100091. https://doi.org/10.1016/j.crneur.2023.100091

    Lerchner, W., Luz-Ricca, A., Dash, K., DerMinassian, V., Richmond, B.J. (2023). Production, Testing, and Verification of Lentivirus for Regional Targeting in the Old-World Monkey Brain. In: Eldridge, M.A., Galvan, A. (eds) Vectorology for Optogenetics and Chemogenetics. Neuromethods, vol 195. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2918-5_1

    Steinbauer, S., Cowles, J. D., Sabbaghi, M. A., Poppelaars, M., Hussain, A., Wagesreither, M., ... & Csiszar, A. (2025). Enhanced AkaLuc Bioluminescence Imaging for Longitudinal Intravital Monitoring of Minimal Residual Disease in a Murine Model of Triple-negative Breast Cancer. bioRxiv, 2025-01. https://doi.org/10.1101/2025.01.18.633734

    Tang, C. Y., Wang, H., Zhang, Y., Wang, Z., Zhu, G., McVicar, A., ... & Chen, W. (2022). GPR125 positively regulates osteoclastogenesis potentially through AKT-NF-κB and MAPK signaling pathways. International Journal of Biological Sciences, 18(6), 2392. https://doi.org/10.7150/ijbs.70620

    Wang, M., Li, S., Guo, W., Wang, L., Huang, J., Zhuo, J., ... & Zhang, H. (2022). CHRAC1 promotes human lung cancer growth through regulating YAP transcriptional activity. Carcinogenesis, 43(3), 264-276. https://doi.org/10.1093/carcin/bgab103

    Won, J., Lee, S., Park, M., Kim, T. Y., Park, M. G., Choi, B. Y., ... & Lee, C. J. (2020). Development of a Laboratory-safe and Low-cost Detection Protocol for SARS-CoV-2 of the Coronavirus Disease 2019 (COVID-19). Experimental neurobiology, 29(2), 107. https://doi.org/10.5607/en20009

    Wu, J., Rowart, P., Jouret, F., Gassaway, B. M., Rajendran, V., Rinehart, J., & Caplan, M. J. (2020). Mechanisms involved in AMPK-mediated deposition of tight junction components to the plasma membrane. American Journal of Physiology-Cell Physiology, 318(3), C486-C501. https://doi.org/10.1152/ajpcell.00422.2019

    Zhang, Y., Wang, H., Zhu, G., Qian, A., & Chen, W. (2020). F2r negatively regulates osteoclastogenesis through inhibiting the Akt and NFκB signaling pathways. International journal of biological sciences, 16(9), 1629. https://doi.org/10.7150/ijbs.41867

This product has no review yet.