2nd Generation Packaging System Mix

Cat. No.
LV003
Unit
200µl
Price
$293.00
Cat. No. LV003
Name 2nd Generation Packaging System Mix
Unit 200µl
Description

For the production of lentiviral particles, three components are generally required: 1) a lentiviral vector containing your inserts of interest, 2) one or two packaging vectors which contain all necessary viral structure proteins, 3) an envelope vector expressing Vesicular Stomatitis Virus (VSV) glycoprotein (G).

In general, lentiviral vectors with a wildtype 5' LTR need the 2nd generation packaging system because these vectors require TAT for activation. However, the 2nd generation packaging mix will also support the production of 3rd lentiviral expression vector with a chimeric 5' LTR.

All the lentiviral expression vectors marketed by ABM are 3rd generation with a chimeric of RSV promoter upstream of 5'-LTR.

 

Packaging Mix Components (200ul mix of 2 plasmids) :   pLenti-P2A, pLenti-P2B

  • Selection: Ampicillin (Bacterial Selection)
  • Amount: 200 μl (100 µg mixture of pLenti-P2A and pLenti-P2B)
  • Appearance: Liquid
  • Storage Temperature: -20°C or below (shipped at ambient temperature)
  • Shelf Life: Up to 1 year (when at -20°C or below in a frost-free freezer)
  • User Manual: Refer to website for downloadable Lentivirus Packaging Protocol
Note

NOT FOR RESALE without prior written consent of ABM. This product is distributed for laboratory research only.

Promotions
 
Bundle up, save more!  These cost-saving bundles combine our best-selling Lentivirus Packaging Mix with reagents for transfection, virus titration, and transduction!
 

 

.
Material Citation If use of this material results in a scientific publication, please cite the material in the following manner: Applied Biological Materials Inc, Cat. No. LV003
Datasheet
  • Jin, Q et al. "Decreased Tumor Progression and Invasion by a Novel Anti-Cell Motility Target for Human Colorectal Carcinoma Cells" PLoS ONE 8(6):e66439 (2013). DOI: doi:10.1371/journal.pone.0066439.
  • Pae, EK;Kim, G;, et al. "Insulin production hampered by intermittent hypoxia via impaired zinc homeostasis" PLoS ONE 9-2:e90192 (2014). PubMed: 24587273.
  • Jin, Q;Liu, G;Domeier, PP;Ding, W;Mulder, KM;, et al. "Decreased tumor progression and invasion by a novel anti-cell motility target for human colorectal carcinoma cells" PLoS ONE 8-6:e66439 (2013). PubMed: 23755307.
  • Taylor, HE et al. "The Innate Immune Factor Apolipoprotein L1 Restricts HIV-1 Infection" J. Virol. 1:592-603 (2014). DOI: 10.1128/JVI.02828-13. PubMed: 24173214. Application: Viral Packaging.
  • Morgan, S. "PKA as the Effector of Beta-2-Adrenoreceptor Signaling Regulating Airway Smooth Muscle Relaxation" Thesis : (2013). Application: Viral Packaging.
  • Li, FY et al. "Second messenger role for Mg2+ revealed by human T-cell immunodeficiency" Nature 475:471 - 6 (2011). DOI: 10.1038/nature10246. PubMed: 21796205. Application: Transfection.
  • George, R et al. "A SHORT INTERFERING RNA MOLECULAR BEACON FOR THE ATTENUATION OF MYCOBACTERIAL INFECTION" American Journal of Biochemistry and Biotechnology 10:40-49 (2014). DOI: 10.3844/ajbbsp.2014.40.49. Application: Viral Packaging.
  • Pae, E. K. et al. "Insulin Production Hampered by Intermittent Hypoxia Via Impared Zinc Homeostasis " PLoS One 2:e90192 (2014). DOI: 10.1371/journal.pone.0090192. PubMed: 24587273. Application: Lentivirus Production .
  • Zhang, J et al. "The construction and proliferative effects of a lentiviral vector capable of stably overexpressing SPINK1 gene in human pancreatic cancer AsPC-1 cell line" Tumour Biol. :1-9 (2015). PubMed: 26586397.
  • Morgan, SJ et al. "β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent" J Biol Chem 289(33):23065-74 (2014). DOI: 10.1074/jbc.M114.557652. PubMed: 24973219.
  • Juang, YL et al. "PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer" Mol Carcinog : (2016). DOI: 10.1002/mc.22465. PubMed: 26824226.
  • Nangami, et al. "Fetuin-A (alpha 2HS glycoprotein) modulates growth, motility, invasion, and senescence in high-grade astrocytomas" Cancer Medicine : (2016). DOI: 10.1002/cam4.940. Application: Knockdown of Cell Line.
  • Juang, YL et al. "PRRX2 as a novel TGF-β-induced factor enhances invasion and migration in mammary epithelial cell and correlates with poor prognosis in breast cancer" Molecular Carcinogenesis 55.12:2247–2259 (2016). DOI: 10.1002/mc.22465. Application: Packaging.
  • Zhang, et al. "The construction and proliferative effects of a lentiviral vector capable of stably overexpressing SPINK1 gene in human pancreatic cancer AsPC-1 cell line" Tumour Biology 37.5:5847 (2016). DOI: 10.1007/s13277-015-4405-z. Application: Generation of lentiviral vectors.
  • Geekiyanage, H et al. "MiR-31 and miR-128 regulates poliovirus receptor-related 4" Mol Oncol 9:1387-1403 (2016). DOI: 10.1016/j.molonc.2016.07.007.
  • Cho, I. S., Gupta, P., Mostafazadeh, N., Wong, S. W., Saichellappa, S., Lenzini, S., Peng, Z., & Shin, J. (2022). Deterministic Single Cell Encapsulation in Asymmetric Microenvironments to Direct Cell Polarity. Advanced Science, 10(3). https://doi.org/10.1002/advs.202206014
  • Li, H., Kanamori, Y., & Moroishi, T. (2024). Cell attachment defines sensitivity to cold stress via the Hippo pathway. Biochemical and Biophysical Research Communications, 730, 150373. https://doi.org/10.1016/j.bbrc.2024.150373
  • Wang, L., Huang, M., Zhang, S., Yang, Y., & Huang, B. (2023). NFATc2 promotes lactate and M2 macrophage polarization through USP17 in lung adenocarcinoma. https://doi.org/10.21203/rs.3.rs-3412110/v1
  • Janneh, A. H., Kassir, M. F., Atilgan, F. C., Lee, H. G., Sheridan, M., Oleinik, N., ... & Ogretmen, B. (2022). Crosstalk between pro-survival sphingolipid metabolism and complement signaling induces inflammasome-mediated tumor metastasis. Cell Reports, 41(10), 111742. https://doi.org/10.1016/j.celrep.2022.111742
  • Lenzini, S., Bargi, R., Chung, G., & Shin, J.-W. (2020). Matrix mechanics and water permeation regulate extracellular vesicle transport. Nature Nanotechnology, 15(3), 217–223. https://doi.org/10.1038/s41565-020-0636-2
  • Zhou, N., Tian, Y., Wu, H., Cao, Y., Li, R., Zou, K., Xu, W., & Lu, L. (2022). Protective Effect of Resveratrol on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2. Molecules, 27(11), 3542. https://doi.org/10.3390/molecules27113542
  • Zhou, N., Tian, Y., Wu, H., Cao, Y., Li, R., Zou, K., Xu, W., & Lu, L. (2022). Protective Effect of Resveratrol on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2. Molecules, 27(11), 3542. https://doi.org/10.3390/molecules27113542
  • He, P., Jiang, F., Wu, L.-F., Zhou, X., Lei, S.-F., & Deng, F.-Y. (2021). Why SNP rs3755955 is associated with human bone mineral density? A molecular and cellular study in bone cells. Molecular and Cellular Biochemistry, 477(2), 455–468. https://doi.org/10.1007/s11010-021-04292-1
  • Habib, K., Bishayee, K., Kang, J., Sadra, A., & Huh, S.-O. (2022). RNA Binding Protein Rbms1 Enables Neuronal Differentiation and Radial Migration during Neocortical Development by Binding and Stabilizing the RNA Message for Efr3a. Molecules and Cells, 45(8), 588–602. https://doi.org/10.14348/molcells.2022.0044
  • Papes, F., Camargo, A. P., de Souza, J. S., Carvalho, V. M. A., Szeto, R. A., LaMontagne, E., Teixeira, J. R., Avansini, S. H., Sánchez-Sánchez, S. M., Nakahara, T. S., Santo, C. N., Wu, W., Yao, H., Araújo, B. M. P., Velho, P. E. N. F., Haddad, G. G., & Muotri, A. R. (2022). Transcription Factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29942-w
  • Wang, Z., Snyder, M., Kenison, J. E., Yang, K., Lara, B., Lydell, E., Bennani, K., Novikov, O., Federico, A., Monti, S., & Sherr, D. H. (2020). How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. International Journal of Molecular Sciences, 22(1), 387. https://doi.org/10.3390/ijms22010387
  • Pinto, C., Slavic-Obradovic, K., Fürweger, D., Thaler, B., Souabni, A., Carotta, S., Aichinger, M., Reiser, U., Impagnatiello, M. A., & Tirapu, I. (2023). Tumor microenvironment mimicking 3D models unveil the multifaceted effects of SMAC mimetics. IScience, 26(4), 106381. https://doi.org/10.1016/j.isci.2023.106381
  • HU, N., ZHANG, S., JIN, A., GUO, L., QU, Z., & WANG, J. (2022). SPINK1 contributes to proliferation and clonal formation of HT29 cells through Beclin1 associated enhanced autophagy. Oncology Research, 30(2), 89–97. https://doi.org/10.32604/or.2022.027058
  • Zhang, S., Lv, C., Niu, Y., Li, C., Li, X., Shang, Y., Zhang, Y., Zhang, Y., Zhang, Y., & Zeng, Y. (2023). RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death & Disease, 14(2). https://doi.org/10.1038/s41419-023-05627-0
  • Zhu, S., Al-Mathkour, M., Cao, L., Khalafi, S., Chen, Z., Poveda, J., Peng, D., Lu, H., Soutto, M., Hu, T., McDonald, O. G., Zaika, A., & El-Rifai, W. (2023). CDK1 bridges NF-κB and β-catenin signaling in response to H. pylori infection in gastric tumorigenesis. Cell Reports, 42(1), 112005. https://doi.org/10.1016/j.celrep.2023.112005
  • Suzuki, H., Nagase, S., Saito, C., Takatsuka, A., Nagata, M., Honda, K., Kaneda, Y., Nishiya, Y., Honda, T., Ishizaka, T., Nakamura, K., Nakada, T., Abe, Y., & Agatsuma, T. (2024). Data from Raludotatug Deruxtecan, a CDH6-Targeting Antibody–Drug Conjugate with a DNA Topoisomerase I Inhibitor DXd, Is Efficacious in Human Ovarian and Kidney Cancer Models. https://doi.org/10.1158/1535-7163.c.7104454.v1
  • Cao, L., Lin, G., Fan, D., Weng, K., Chen, Y., Wang, J., Li, P., Zheng, C., Huang, C., & Xie, J. (2024). NUAK1 activates STAT5/GLI1/SOX2 signaling to enhance cancer cell expansion and drives chemoresistance in gastric cancer. Cell Reports, 43(7), 114446. https://doi.org/10.1016/j.celrep.2024.114446
This product has no review yet.
Controls and Related Product:

CAT.NO
LV900
UNIT
100 rxn
PRICE
$212.00

CAT.NO
LV053
UNIT
200µl
PRICE
$355.00

CAT.NO
LV999
UNIT
100 ml
PRICE
$162.00

CAT.NO
G516
UNIT
1.0 ml
PRICE
$190.00

CAT.NO
G515
UNIT
1.0 ml
PRICE
$190.00

CAT.NO
LV998
UNIT
1 kit
PRICE
$567.00