Mycoplasma PCR Detection & Elimination Bundle

Cat. No.
G238-G398
Unit
Bundle
Price
$285.00
Cat. No. G238-G398
Name Mycoplasma PCR Detection & Elimination Bundle
Description

Enjoy superior performance at lower costs!

abm's Mycoplasma PCR Detection & Elimination Bundle combines the power of our bestselling kit Mycoplasma PCR Detection Kit (Cat. No. G238) and MycoAway™ Mycoplasma Elimination Cocktail (1000X) (Cat. No. G398). 

The Mycoplasma PCR Detection Kit offers highly specific and sensitive detection of 200+ strains of Mycoplasma in less than 2 hours. This bestselling kit is designed to minimize false positives, ensuring quick and reliable routine screening of cell cultures. A recent official publication by a national public health agency found that our kit out-performs Sigma and Lonza's kits while being 6X less expensive than ATCC's kit (Russell et al., 2020). Furthermore, the MycoAway™ Mycoplasma Elimination Cocktail (1000X) is a specially formulated agent to effectively clear cells from Mycoplasma contamination in both adherent and suspension cells. Our potent formulation is non-toxic and eliminates 70+ species of Mycoplasma in as little as 2-3 weeks (4-6 cell passages)! The combination of these two kits ensures complete protection of your cell lines!

Unit Bundle
Material Citation If use of this material results in a scientific publication, please cite the material in the following manner: Applied Biological Materials Inc, Cat. No. G238-G398
  • Bahreyni, A., Liu, H., Mohamud, Y., Xue, Y. C., Zhang, J., & Luo, H. (2022). A new miRNA-Modified coxsackievirus B3 inhibits triple negative breast cancer growth with improved safety profile in immunocompetent mice. Cancer Letters, 548, 215849. https://doi.org/10.1016/j.canlet.2022.215849

    Conrad, S. J., Silva, R. F., Hearn, C. J., Climans, M., & Dunn, J. R. (2018). Attenuation of Marek's disease virus by codon pair deoptimization of a core gene. Virology, 516, 219-226. https://doi.org/10.1016/j.virol.2018.01.020

    Dogra, S., Elayapillai, S. P., Qu, D., Pitts, K., Filatenkov, A., Houchen, C. W., ... & Hannafon, B. N. (2023). Targeting doublecortin-like kinase 1 reveals a novel strategy to circumvent chemoresistance and metastasis in ovarian cancer. Cancer Letters, 578, 216437. https://doi.org/10.1016/j.canlet.2023.216437

    Du, L., Liu, W., Aldana-Masangkay, G. et al. SUMOylation inhibition enhances dexamethasone sensitivity in multiple myeloma. J Exp Clin Cancer Res 41, 8 (2022). https://doi.org/10.1186/s13046-021-02226-9

    Favaretto, G., Rossi, M.N., Cuollo, L. et al. Neutrophil-activating secretome characterizes palbociclib-induced senescence of breast cancer cells. Cancer Immunol Immunother 73, 113 (2024). https://doi.org/10.1007/s00262-024-03695-5

    Jia, B., Yin, X., Wang, Y., Qian, J., He, Y., Yang, C., … Meng, X. (2020). CircRNA-PTN Sponges miR-326 to Promote Proliferation in Hepatocellular Carcinoma. OncoTargets and Therapy, 13, 4893–4903. https://doi.org/10.2147/OTT.S251300

    Kalejaiye, T. D., Bhattacharya, R., Burt, M. A., Travieso, T., Okafor, A. E., Mou, X., ... & Musah, S. (2022). SARS-CoV-2 employ BSG/CD147 and ACE2 receptors to directly infect human induced pluripotent stem cell-derived kidney podocytes. Frontiers in Cell and Developmental Biology, 10, 855340. https://doi.org/10.3389/fcell.2022.855340

    Kurden-Pekmezci, A., Cakiroglu, E., Eris, S., Mazi, F. A., Coskun-Deniz, O. S., Dalgic, E., ... & Senturk, S. (2023). MALT1 paracaspase is overexpressed in hepatocellular carcinoma and promotes cancer cell survival and growth. Life Sciences, 323, 121690. https://doi.org/10.1016/j.lfs.2023.121690

    Lee, M. H., Ratanachan, D., Wang, Z., Hack, J., Adbulrahman, L., Shamlin, N. P., ... & Schaue, D. (2023). Adaptation of the tumor antigen presentation machinery to ionizing radiation. The Journal of Immunology, 211(4), 693-705. https://doi.org/10.4049/jimmunol.2100793

    Li, F., Kitajima, S., Kohno, S., Yoshida, A., Tange, S., Sasaki, S., ... & Takahashi, C. (2019). Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Research, 79(15), 3903-3915. https://doi.org/10.1158/0008-5472.CAN-18-3604

    Lorusso, B., Cerasoli, G., Falco, A., Frati, C., Graiani, G., Madeddu, D., ... & Lagrasta, C. (2022). Β-blockers activate autophagy on infantile hemangioma-derived endothelial cells in vitro. Vascular pharmacology, 146, 107110. https://doi.org/10.1016/j.vph.2022.107110

    Miranda, L., Mandrich, L., Massa, S., Nutile, T., Crovella, C., De Rosa, I., ... & Caputo, E. (2025). Breast Cancer Tissues and Organoids BioBank: Constitution, Research Activities and Samples Access. Organoids, 4(1), 5. https://doi.org/10.3390/organoids4010005

    Nasser, A. M., Melamed, L., Wetzel, E. A., Chang, J. C. C., Nagashima, H., Kitagawa, Y., ... & Miller, J. J. (2024). CDKN2A/B homozygous deletion sensitizes IDH-mutant glioma to CDK4/6 inhibition. Clinical Cancer Research, 30(14), 2996-3005. https://doi.org/10.1158/1078-0432.CCR-24-0562

    Pelullo, M., Nardozza, F., Zema, S., Quaranta, R., Nicoletti, C., Besharat, Z. M., ... & Bellavia, D. (2019). Kras/ADAM17-dependent Jag1-ICD reverse signaling sustains colorectal cancer progression and chemoresistance. Cancer research, 79(21), 5575-5586. https://doi.org/10.1158/0008-5472.CAN-19-0145

    Pelullo, M., Zema, S., De Carolis, M., Cialfi, S., Giuli, M. V., Palermo, R., ... & Bellavia, D. (2022). 5FU/Oxaliplatin-induced jagged1 cleavage counteracts apoptosis induction in colorectal cancer: A novel mechanism of intrinsic drug resistance. Frontiers in Oncology, 12, 918763. https://doi.org/10.3389/fonc.2022.918763

    Roye, Y., Bhattacharya, R., Mou, X., Zhou, Y., Burt, M. A., & Musah, S. (2021). A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium. Micromachines, 12(8), 967. https://doi.org/10.3390/mi12080967

    Zhong, N., Li, D., Wang, B., Kovalchuk, O., & Kovalchuk, I. (2023). Cannabinol inhibits cell growth and triggers cell cycle arrest and apoptosis in cancer cells. Biocatalysis and Agricultural Biotechnology, 48, 102627. https://doi.org/10.1016/j.bcab.2023.102627

    Zhou, Q., Pichlmeier, S., Denz, A. M., Schreiner, N., Straub, T., Benitz, S., ... & Regel, I. (2024). Altered histone acetylation patterns in pancreatic cancer cell lines induce subtype‑specific transcriptomic and phenotypical changes. International journal of oncology, 64(3), 1-12. https://doi.org/10.3892/ijo.2024.5614

    Zhu, Q., Zhang, X., Lu, F. et al. RUNX1-BMP2 promotes vasculogenic mimicry in laryngeal squamous cell carcinoma via activation of the PI3K-AKT signaling pathway. Cell Commun Signal 22, 227 (2024). https://doi.org/10.1186/s12964-024-01605-x

  • Eyme, K. M., Carvalho, L., & Badr, C. E. (2021). Intranasal delivery of experimental compounds in orthotopic brain tumor mouse models. STAR protocols, 2(1), 100290. https://doi.org/10.1016/j.xpro.2020.100290

    Eyme, K. M., Sammarco, A., & Badr, C. E. (2022). Orthotopic brain tumor models derived from glioblastoma stem-like cells. In Methods in Cell Biology (Vol. 170, pp. 1-19). Academic Press. https://doi.org/10.1016/bs.mcb.2022.02.003

This product has no review yet.