RNase R

Cat. No.
E049
Unit
500 U (50 μl)
Price
$319.00
Cat. No. E049
Name RNase R
Unit 500 U (50 μl)
Category Molecular Biology Enzymes and Kits
Description

Save when you buy abm's RNase R bundled with RNaseOFF Ribonuclease Inhibitor. Click here and add this bundle to your cart to save instantly!

RNase R is an E. coli exoribonuclease that exhibits 3'-to-5' exonuclease activity, efficiently digesting nearly all linear RNA species. This enzyme does not digest circular, lariat, or double-stranded RNA with short 3’ overhangs (less than seven nucleotides). As such, this enzyme is ideally suited to the study of lariat RNA produced by traditional splicing, as well as circRNAs which arise through back-splicing. By removing linear RNAs from cellular or RNA extracts, RNase R greatly facilitates the identification of circular species through RNA-sequencing. This enables researchers to probe the landscape of splicing events with greater depth.

Product Component Quantity
RNase R (10 U/µl) 50 µl
10X RNase R Reaction Buffer 1.0 ml
Application
  • Enriching circRNAs in biological samples
  • Identification of intronic lariat sequences
  • Identification of exonic circRNAs
  • Studying alternative splicing
  • Production of artificial circular RNAs
Concentration 10 U/μl
Format General Enzyme supplied with 10X Reaction Buffer.
Expression System General Recombinant E. coli
Reaction Definition Use 1X RNase R Reaction Buffer and incubate at 37°C. One unit is defined as the amount of RNase R that converts 1 µg of poly(A) into acid-soluble nucleotides in 10 minutes at 37°C.
Reaction Buffer 200 mM Tris-HCl, 1 M KCl, 10 mM MgCl2, pH 7.5
Storage Buffer 50 mM Tris-HCl (pH 7.5), 100mM NaCl, 0.1 mM EDTA, 1 mM DTT, and 50% (v/v) Glycerol.
Storage Condition Store all components at -20 °C. Avoid repeated freeze-thaw cycles of all components to retain maximum performance. All components are stable for 1 year from the date of shipping when stored and handled properly.
Note

1) If degradation is inefficient, use a slightly higher incubation temperature (40-45°C) and supplement additional enzyme partway (e.g. 0.5 µl after 1 hour) through the procedure. The higher temperature is particularly useful for degrading highly structured linear RNAs, such as rRNAs. Do not exceed 45°C or incubate over 3 hours, as this may lead to non-enzymatic RNA degradation.

2) Magnesium at concentrations of 0.1-1.0 mM is required for optimal activity. If EDTA is present, compensate by adding MgCl2 to 1.0 mM final.

3) RNase R exhibits low activity on tRNA, rRNA and other highly structured RNAs, for which the 3’ end is double stranded with a short 3’ overhang. These RNA species can stall the enzyme and result in greatly reduced activity. For best results, removal of rRNA from total RNA extracts is highly recommended.

Caution This product is distributed for laboratory research only. Not for diagnostic use.
Material Citation If use of this material results in a scientific publication, please cite the material in the following manner: Applied Biological Materials Inc, Cat. No. E049
Datasheet
Search CoA here
  • Wesselhoeft, R. A., Kowalski, P. S., Parker-Hale, F. C., Huang, Y., Bisaria, N., & Anderson, D. G. "RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration In Vivo" Molecular cell 74(3):508-520 (2019).

    Vay, K. L., Salibi, E., Ghosh, B., Dora Tang, T.-Y., & Mutschler, H. (2022). Ribozyme-phenotype coupling in peptide-based coacervate protocells. https://doi.org/10.1101/2022.10.25.513667

    Peng, L., Chen, J., Li, M., & Wang, R. (2022). Circ_MBNL3 Restrains Hepatocellular Carcinoma Progression by Sponging miR-873-5p to Release PHF2. Biochemical Genetics. https://doi.org/10.1007/s10528-022-10295-4

    Zhang, S., Shen, Z., Chao, G., Du, X., Zhang, W., Jin, D., & Liu, Y. (2022). Circ_0004712 Silencing Suppresses the Aggressive Changes of Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Targeting miR-633/TRAF6 Axis. Biochemical Genetics, 1-17. https://doi.org/10.1007/s10528-022-10265-w

    Fu, C., Wang, J., Hu, M., & Zhou, W. (2022). Circ_0005615 contributes to the progression and Bortezomib resistance of multiple myeloma by sponging miR-185-5p and upregulating IRF4. Anti-Cancer Drugs, 33(9), 893-902. https://doi.org/10.1097/CAD.0000000000001378

    He, M., Jia, Z., Wen, Y., & Chen, X. (2022). Circ_0043947 contributes to interleukin 1β-induced injury in chondrocytes by sponging miR-671-5p to up-regulate RTN3 expression in osteoarthritis pathology. Journal of Orthopaedic Surgery and Research, 17(1), 1-13. https://doi.org/10.1186/s13018-022-02970-4

    Li, J., Liu, X., Dong, S., Liao, H., Huang, W., & Yuan, X. (2022). Circ_0101802 Facilitates Colorectal Cancer Progression Depending on the Regulation of miR-665/DVL3 Signaling. Biochemical Genetics, 60(6), 2250–2267. https://doi.org/10.1007/s10528-022-10207-6

    Xie, H., Yao, J., Wang, Y., & Ni, B. (2022). Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Delivery, 29(1), 1257–1271. https://doi.org/10.1080/10717544.2022.2057617

    Gao, X., Xu, N., Miao, K., Huang, G., & Huang, Y. (2022). Circ_0136666 aggravates osteosarcoma development through mediating miR-1244/CEP55 axis. Journal of Orthopaedic Surgery and Research, 17(1). https://doi.org/10.1186/s13018-022-03303-1

    Li, Z., Wang, Z., Yang, S., Shen, C., Zhang, Y., Jiang, R., Zhang, Z., Zhang, Y., & Hu, H. (2022). CircSTK39 suppresses the proliferation and invasion in Bladder Cancer via regulating miR-135a-5p/NR3C2-mediated Epithelial-Mesenchymal Transition signaling pathway. Cell Biology & Toxicology. To https://doi.org/10.21203/rs.3.rs-1867978/v1

    Zhang, M., Mou, L., Liu, S., Sun, F., & Gong, M. (2021). Circ_0001103 alleviates IL-1β-induced chondrocyte cell injuries by upregulating SIRT1 via targeting miR-375. Clinical Immunology, 227, 108718. https://doi.org/10.1016/j.clim.2021.108718

    Liu, Y., Wang, S., Pan, S., Yan, Q., Li, Y., & Zhao, Y. (2022). Circ_0000463 contributes to the progression and glutamine metabolism of non‐small‐cell lung cancer by targeting miR‐924/SLC1A5 signaling. Journal of Clinical Laboratory Analysis, 36(1), e24116. https://doi.org/10.1002/jcla.24116

    Ma, L., Liu, W., & Li, M. (2022). Circ_0061140 Contributes to Ovarian Cancer Progression by Targeting miR-761/LETM1 Signaling. Biochemical Genetics. https://doi.org/10.1007/s10528-022-10277-6

    Omata, Y., Okawa, M., Haraguchi, M., Tsuruta, A., Matsunaga, N., Koyanagi, S., & Ohdo, S. (2022). RNA editing enzyme ADAR1 controls miR-381-3p-mediated expression of multidrug resistance protein MRP4 via regulation of circRNA in human renal cells. Journal of Biological Chemistry, 298(8), 102184. https://doi.org/10.1016/j.jbc.2022.102184

    Ou, H., Li, J., Lv, Q., & Feng, D. (2022). Hsa_circ_0069094 positively regulates the expression of oncogenic ZNF217 by competitively targeting miR-758–3p to promote the development of breast cancer. Reproductive Biology, 22(4), 100708. https://doi.org/10.1016/j.repbio.2022.100708

    Wang, F., Zhong, S., Mao, C., Jin, J., & Wang, H. (2022). Circ_0000291 contributes to hepatocellular carcinoma tumorigenesis by binding to miR-1322 to up-regulate UBE2T. Annals of Hepatology, 100722. https://doi.org/10.1016/j.aohep.2022.100722

    Zhang, H., Huang, T., Yuan, S., Long, Y., Tan, S., Niu, G., ... & Yang, M. (2022). Circ_0020123 plays an oncogenic role in non‐small cell lung cancer depending on the regulation of miR‐512‐3p/CORO1C. Thoracic Cancer, 13(9), 1406-1418. https://doi.org/10.1111/1759-7714.14408

    Zhao, Y., Wang, S., Liu, S., Yan, Q., Li, Y., & Liu, Y. (2022). CircHSPG2 absence weakens hypoxia-induced dysfunction in cardiomyocytes by targeting the miR-25-3p/PAWR axis. Cardiovascular Diagnosis and Therapy, 12(5), 589-602. https://doi.org/10.21037/cdt-22-197

    Zhu, C., Jiang, X., Xiao, H., & Guan, J. (2022). Circ_0030998 Restrains Cisplatin Resistance Through Mediating miR-1323/PDCD4 Axis in Non-small Cell Lung Cancer. Biochemical Genetics, 1-21. https://doi.org/10.1007/s10528-022-10220-9

  • Alfonso-Gonzalez, C., Holec, S., Gorey, S., Shi, M., Rauer, M., Carrasco, J., ... & Hilgers, V. (2024). ELAV mediates circular RNA biogenesis in neurons. bioRxiv, 2024-06. https://doi.org/10.1101/2024.06.22.600180

    De Tomi E, Orlandi E, Belpinati F, Patuzzo C, Trabetti E, Gomez-Lira M, Malerba G. New Axes of Interaction in Circ_0079593/miR-516b-5p Network in Melanoma Metastasis Cell Lines. Genes (Basel). 2024 Dec 21;15(12):1647. https://doi.org/10.3390/genes15121647. PMID: 39766913; PMCID: PMC11675925.

    Drula, R., Braicu, C., Chira, S., & Berindan-Neagoe, I. (2023). Investigating circular RNAs using qRT-PCR; roundup of optimization and processing steps. International Journal of Molecular Sciences, 24(6), 5721. https://doi.org/10.3390/ijms24065721

    Frei, J., Jarzebska, N.T., Mellett, M., Kündig, T.M., Pascolo, S., Reichmuth, A.M. (2024). Design and Synthesis of Circular RNA Expression Vectors. In: Kramps, T. (eds) RNA Vaccines. Methods in Molecular Biology, vol 2786. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3770-8_9

    Hu, Q., Zhao, H., Zhou, K., Hua, X., & Zhang, X. (2024). Scarless circular mRNA-based CAR-T cell therapy elicits superior anti-tumor efficacy. bioRxiv, 2024-08. https://doi.org/10.1101/2024.08.05.606578

    Liu, W., Yin, C., & Liu, Y. (2021). Circular RNA circ_0091579 promotes hepatocellular carcinoma proliferation, migration, invasion, and glycolysis through miR-490-5p/CASC3 axis. Cancer Biotherapy & Radiopharmaceuticals, 36(10), 863-878. https://doi.org/10.1089/cbr.2019.3472

    Massu A, Mahanil K, Limkul S, Phiwthong T, Boonanuntanasarn S, Teaumroong N, Somboonwiwat K, Boonchuen P. Identification of immune-responsive circular RNAs in shrimp (Litopenaeus vannamei) upon yellow head virus infection. Fish Shellfish Immunol. 2024 Jan;144:109246. https://doi.org/10.1016/j.fsi.2023.109246. Epub 2023 Nov 25. PMID: 38013134.

    Nanishi, K., Konishi, H., Shoda, K., Arita, T., Kosuga, T., Komatsu, S., ... & Otsuji, E. (2020). Circulating circERBB2 as a potential prognostic biomarker for gastric cancer: an investigative study. Cancer Science, 111(11), 4177-4186. https://doi.org/10.1111/cas.14645

    Ron, M., Ulitsky, I. Context-specific effects of sequence elements on subcellular localization of linear and circular RNAs. Nat Commun 13, 2481 (2022). https://doi.org/10.1038/s41467-022-30183-0 

    Takaki, W., Konishi, H., Shoda, K. et al. Significance of Circular FAT1 as a Prognostic Factor and Tumor Suppressor for Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 28, 8508–8518 (2021). https://doi.org/10.1245/s10434-021-10089-9

    Ungerleider, N., Concha, M., Lin, Z., Roberts, C., Wang, X., Cao, S., ... & Flemington, E. K. (2018). The epstein barr virus circRNAome. PLoS pathogens, 14(8), e1007206. https://doi.org/10.1371/journal.ppat.1007206

    Wesselhoeft, R. A., Kowalski, P. S., Parker-Hale, F. C., Huang, Y., Bisaria, N., & Anderson, D. G. (2019). RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Molecular cell, 74(3), 508-520. https://doi.org/10.1016/j.molcel.2019.02.015

This product has no review yet.
Controls and Related Product:

CAT.NO
G138
UNIT
4,000 U (100 µl)
PRICE
$83.00

CAT.NO
D518
UNIT
50 preparations
PRICE
$307.00

CAT.NO
E091
UNIT
200 U (100 μl)
PRICE
$102.00

CAT.NO
G592
UNIT
100 rxn
PRICE
$209.00

CAT.NO
G596
UNIT
100 rxn
PRICE
$118.00

CAT.NO
G891
UNIT
500 rxn (4 x 1.25 ml)
PRICE
$139.00